

Code No. : 13408 O

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (ECE) II Year I-Semester Backlog Examinations, December-2017

Electromagnetic Theory

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Draw the shapes of r = constant, $\theta = constant$ and $\phi = constant$ planes.
- 2. Classify electrostatic charge distributions.
- 3. Compare Absolute potential and relative potential.
- 4. What is the inconsistency in Ampere's circuital law?
- 5. List any two applications of Biot-Savart's law.
- 6. Highlight the use of Stoke's theorem.
- 7. Describe uniform plane wave.
- 8. Write the expressions for attenuation constant and phase constant in free space.
- 9. Define critical and Brewster angles.
- 10. State the Gauss's theorem for electromagnetic wave.

Part R (5 × 10 = 50 Marks)

	Part-B $(5 \times 10 = 50 \text{ Marks})$	
11.	a) State and explain the Coulomb's law of force and the terms point charge, source point and field point.	[5]
	b) In spherical coordinates, a volume charge density $\rho_v = 10e^{-2t}$ c/m ³ is present. Determine the divergence of conduction current density.	[5]
12.	a) Prove that electrostatic field is a curl-free field.	[5]
	b) Obtain an expression for the capacitance of parallel plate capacitor.	[5]
13.	a) Find the self inductance of a long coaxial cable of length 'l' with inner cylinder radius 'a' and outer cylinder radius 'b' carrying current 'I'.	[5]
	b) Region 1, for which $\mu_{r1} = 3$, is defined by $x < 0$ and region 2, $x > 0$ has $\mu_{r2} = 5$. Given $\vec{H_1} = 4\hat{a}_x + 3\hat{a}_y - 6\hat{a}_z$ A/m. Determine $\vec{H_2}$ for $x > 0$.	[5]
14.	a) Formulate EM wave equation for Electric field in free space.	[5]
	b) If $\in_r = 1$ and $\mu_r = 1$ for the medium in which a wave with frequency $f = 0.3$ GHz is propagating, determine the propagation constant and the intrinsic impedance of the medium when $\sigma = 10$ mho/m and $\sigma = 0$.	[5]
15.	a) Formulate expressions of reflection coefficient and transmission coefficients of a plane wave under normal incidence.	[6]
	b) A plane wave travelling in free space has an average Poynting vector of 5W/m ² . Find the average energy density.	[4]
16.	a) State and prove Poynting's theorem.	[5]
	b) Formulate Maxwell's equations for time varying fields	[5]
17.	 Answer any <i>two</i> of the following: a) Ampere's law and its applications. b) Wave polarization and different types. c) Reflection of wave due to oblique incidence. 	[5] [5] [5]

CSCSCS302020